Improving the representation of soil productivity/constraints in existing DSS and modelling platforms

Farmers face multiple, complex soil constraints that are difficult and costly to diagnose, assess and ameliorate.

Following on from the scoping study Soil models, tools and data: Current state of play, future directions and setting up for longevity and a legacy from the CRC for High Performance Soils, this project will address the issue that most Decision Support Systems (DSS) do not allow for complex soil constraints in their modelling.

Currently, the models and DSS used in Australian agriculture have a limited ability to represent a diversity of soil constraints and how these constraints interact to affect crop and pasture production. Essentially, only nitrogen fertility and soil water dynamics in dryland environments is well represented.

This project will improve already existing and widely used DSS (ARM Online, Yield Prophet and Soil Water App) through developing soil constraint modules to increase the reliability of predictions that can be used in the paddock.

Focusing on DSS with existing user bases will ensure early and rapid adoption and will provide enhanced decision support to the agricultural industry for addressing complex soil productivity and constraint challenges that limit farm productivity. Ultimately, this will help farmers and advisers to formulate interventions and new management strategies to improve productivity.

Incorporating developments into existing DSS will ensure that the project has a direct payoff to Australian farmers and will enable them to identify efficient strategies to address soil constraints to production for their specific circumstances. This represents a significant user base that will facilitate the early uptake of the projects outputs leading to rapid impacts.


University of Southern Queensland, Federation University, NSW DPI, University of Tasmania, Birchip Cropping Group, Burdekin Productivity Services, West Midlands Group, Riverine Plains Inc.

Funded by

CRC for High Performance Soils Ltd. Australia

Yunru (Chloe) Lai
Yunru (Chloe) Lai
Research Fellow - Soil and Crop Modelling

My research interests include pedometrics, empirical and mechanistic soil and crop modelling.